Comparing LDA and LSA Topic Models for Content-Based Movie Recommendation Systems
نویسندگان
چکیده
We propose a plot-based recommendation system, which is based upon an evaluation of similarity between the plot of a video that was watched by a user and a large amount of plots stored in a movie database. Our system is independent from the number of user ratings, thus it is able to propose famous and beloved movies as well as old or unheard movies/programs that are still strongly related to the content of the video the user has watched. The system implements and compares the two Topic Models, Latent Semantic Allocation (LSA) and Latent Dirichlet Allocation (LDA), on a movie database of two hundred thousand plots that has been constructed by integrating different movie databases in a local NoSQL (MongoDB) DBMS. The topic models behaviour has been examined on the basis of standard metrics and user evaluations, performance assessments with 30 users to compare our tool with a commercial system have been conducted.
منابع مشابه
Comparing Topic Models for a Movie Recommendation System
Recommendation systems have become successful at suggesting content that are likely to be of interest to the user, however their performance greatly suffers when little information about the users preferences are given. In this paper we propose an automated movie recommendation system based on the similarity of movie: given a target movie selected by the user, the goal of the system is to provi...
متن کاملTopicview: Visual Analysis of Topic Models and their Impact on Document Clustering
We present a new approach for analyzing topic models using visual analytics. We have developed TopicView, an application for visually comparing and exploring multiple models of text corpora, as a prototype for this type of analysis tool. TopicView uses multiple linked views to visually analyze conceptual and topical content, document relationships identified by models, and the impact of models ...
متن کاملA Non-intrusive Movie Recommendation System
Several recommendation systems have been developed to support the user in choosing an interesting movie from multimedia repositories. The widely utilized collaborative-filtering systems focus on the analysis of user profiles or user ratings of the items. However, these systems decrease their performance at the start-up phase and due to privacy issues, when a user hides most of his personal data...
متن کاملExploring Topic Coherence over Many Models and Many Topics
We apply two new automated semantic evaluations to three distinct latent topic models. Both metrics have been shown to align with human evaluations and provide a balance between internal measures of information gain and comparisons to human ratings of coherent topics. We improve upon the measures by introducing new aggregate measures that allows for comparing complete topic models. We further c...
متن کاملA review of text mining approaches and their function in discovering and extracting a topic
Background and aim: Four text mining methods are examined and focused on understanding and identifying their properties and limitations in subject discovery. Methodology: The study is an analytical review of the literature of text mining and topic modeling. Findings: LSA could be used to classify specific and unique topics in documents that address only a single topic. The other three text min...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014